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SUMMARY

Parallel computation on clusters of workstations is becoming one of the major trends in the study of parallel
computations, because of their high computing speed, cost effectiveness and scalability. This paper presents
studies of using a cluster of workstations for the ®nite element adaptive mesh analysis of a free surface seepage
problem. A parallel algorithm proven to be simple to implement and ef®cient is used to perform the analysis. A
network of workstations is used as the hardware of a parallel system. Two parallel software packages, P4 and
PVM (parallel virtual machine), are used to handle communications among networked workstations.
Computational issues to be discussed are domain decomposition, load balancing, and communication time.
# 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 27, 179±192 (1998)

KEY WORDS: parallel computing; cluster of workstations; domain decomposition; load balancing; free surface seepage; ®nite
element adaptive meshes

1. INTRODUCTION

For the past few years, with the advanced technology in the computer industry, workstations have

been produced with high computing speed and low cost. Because of their high computing speed, cost

effectiveness and scalability, parallel computation on clusters of workstations is becoming one of the

major trends in the study of parallel computations. Also, with the availability of easily accessible

parallel software packages to create a parallel virtual machine, researchers who are unable to access

parallel computers can create one with their resident workstations, thus expanding their computing

power.

This paper is organized such that each aspect necessary to make the parallel computations feasible

on a cluster of workstations will be discussed separately with appropriate references. Thus the next

section presents the free boundary seepage problem that is used as the test case. The following section

discusses the adaptive mesh ®nite element scheme used. Then ways of performing domain

decomposition necessary for the parallel computations will be analysed, followed by the numerical

algorithm to be used in the parallel environment. Finally a short discussion of the two popular parallel

software packages P4 and PVM will be presented before results of using all these elements are given.
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2. FREE BOUNDARY PROBLEM

For the numerical implementation the free surface seepage problem to be studied is shown in Figure

1. Because of the assumptions made, the problem is described by the velocity potential function j,

whose governing differential equation and boundary conditions are also shown in Figure 1. The

relevant dimensions are taken to be x1� 40, y1� 10 and y2� 3. In Figure 1, O is the seepage region

`abdf'. The location of the curve fd, y� �f (x), is unknown a priori.

A ®xed domain formulation for this problem can be obtained by using the Baiocchi method

and transformation. Since the early 1970s these have been used on a large number of seepage

problems.1±5 In this approach the a priori unknown solution region is extended across the free surface

into a known region. The dependent variable is also continuously, similarly extended. Then a new

dependent variable is de®ned using Baiocchi's transformation within these regions. The resulting

problem formulation leads to a `complementarity system' associated with its respective variational or

quasi-variational inequality formulation. This method has proven effective not only from the purely

theoretical point of view but also from the point of view of yielding new, simple and ef®cient

numerical solution schemes.

Figure 2 shows the governing equations and boundary conditions that describe the ®xed domain

formulation of the problem presented in Figure 1. D is the region `abef' The variable w is the

Baiocchi transformation of the extended potential function, i.e.

w�x; y� � � y1

y
� ~j�x; �Z� ÿ �Z� d�Z; �1�

where

~j�x; y� � j�x; y� in �O; ~j�x; y� � y in �Dÿ �O: �2�

The detailed derivations of these equations are given in Reference 4.

Figure 1. Example physical problem (free boundary seepage) for numerical implementation
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The problem shown in Figure 2 can be written as a `complementarity system' and its

corresponding variational inequality formulation. Then the following theorem can be stated. Let

�p(x, y) be the Dirichlet data in Figure 2 and de®ne

K � fv�x; y�jv 2 H1�D�; vj@D � �p; v5 0 a:e: on Dg;
a closed convex set, K�H1(D).

Theorem

If w 2 K satis®es the governing equations and boundary conditions shown in Figure 2, then it also

satis®es the variational inequality

a�w; vÿ w�5 L�vÿ w� 8v 2 K; �3�
where

a�w; vÿ w� �
��

D

Hw�H�vÿ w� dx dy �
��

D

�wx�vx ÿ wx� � wy�vy ÿ wy�� dx dy; �4�

L�vÿ w� � ÿ
��

D

�vÿ w� dx dy: �5�

The ®nding of w 2 K is equivalent to solving the minimization problem

J �w�4 J �v� 8v 2 K; �6�
where

J �v� � a�v; v� � 2� f; v�; �7�

Figure 2. Fixed domain formulation for example physical problem
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in which a(v, v) is a bilinear form, continuous, symmetric, positive de®nite on R and f 2 R, i.e.

a�v; v� �
��

D

Hv�Hv dx dy; �8�

� f; v� �
��

D

f v dx dy: �9�

For this example problem, f� 1. The functional J has one and only one minimum in a closed convex

set.

The minimum is found using the ®nite element algorithm

u
�n�1=2�
i � ÿ 1

aii

Piÿ1

j�1

aiju
�n�1�
j � PN

j�i�1

aiju
�n�
j � fi

 !
; �10�

u
�n�1�
i � Pi�u�n�i � a�u�n�1=2�

i ÿ u
�n�
i �� � max�0; u

�n�
i � a�u�n�1=2�

i ÿ u
�n�
i ��; �11�

where aij � a�Ni;Nj�; fi � � f;Ni�; Ni is the canonical basis of RN, Pi is the projection on the convex

set, i� 1, . . . , N, N is the number of nodal points and a is the relaxation factor. Linear triangular

elements will be used in the discretization. It should be noted that the projection operation in the

numerical scheme must be applied during the iteration process. It cannot be applied after the iteration

process has been completed, since if it were, an incorrect solution would be obtained. For the

numerical results given herein, the SOR relaxation factor was 1�85, while the stopping error criterion

was 10ÿ4 for the maximum absolute difference between iterates at a mesh point.

3. ADAPTIVE MESH FINITE ELEMENT ANALYSIS

Error estimation and local mesh re®nement are two major concepts of adaptive mesh ®nite element

analysis. In addition, a mesh re®nement algorithm is required to perform remeshing after obtaining

the error of a ®nite element system. The error estimate decides how the computed results deviate from

the exact solution. Local mesh re®nement testing is performed to determine how the mesh is to be

re®ned. The remeshing algorithm is then used to automatically generate a re®ned mesh according to

the error obtained.

The error estimation procedure used herein was introduced by Zienkiewicz and Zhu.6 It allows an

accurate assessment of errors while remaining so simple that it can readily be implemented as a

postprocessor involving minimal computation. This computationally simple error estimator with the

modi®cation introduced by Burkley and Bruch7 and Burkley et al.8 is used in the existing ®nite

element code for the solution of a free surface ¯ow through an earth dam using a parallel computer.

The modi®cation used by Burkley and Bruch7 was that, instead of using the Zienkiewicz±Zhu

procedure (a projection method) to calculate the nodal estimates for the exact nodal ¯uxes, they

performed a simple averaging technique. That is, for each node they added up, say, the x-¯uxes

(which were constants since linear elements were used) from the elements that contained that node

and divided that sum by the number of contributing elements. The same was done for the y-¯uxes.

They also made one other minor change in the nature of the denominator for the calculation of the

predicted value of the relative percentage error. A mesh generator and a mesh re®ner were used to

perform the ®nite element analysis and the postprocessing of the mesh re®nement. Isosceles right

triangle elements were used for the purpose of this study. A simple mesh generator and re®ner for

these elements is implemented to generate the initial mesh. The concept behind the mesh generation

and mesh re®nement is simple: divide an element into two by re®ning across its longest side.
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In this study, incompatible elements are not allowed. Therefore a recursive process proposed by

Rivara9,10 is used to avoid having such elements. For the re®ning process, if the longest side of a

re®ning element (target element) is shared with another element (neighbour element), the neighbour

element must be re®ned ®rst. However, once the shared side is not the longest side of the neighbour

element, the neighbour element is re®ned ®rst into two elements, then the new element sharing the

same longest side with the target element is re®ned. Since the same situation may happen to the

neighbour element, the re®nement process will be propagated until no element shares the longest side

of the element being re®ned, or the shared side is the longest side for both elements. Therefore

re®ning an element may cause a recursive re®nement in the neighbourhood of that element. Since

triangles are being divided in half, this procedure will cause elements to be similar triangles without

there being any incompatible elements.

Accordingly, to create an initial mesh block, we start with two large triangular elements in a square

or rectangle. Then these two large elements can be subdivided (re®ned) into four smaller triangular

elements. Thus a mesh can be obtained by repeating this process until the area of every element is

smaller than a common area criterion. Similarly, for the re®nement of the mesh after the error

estimate the same procedure is applied. In this stage the desired area for each element calculated from

the error estimate process is used as the new area criterion for an element.

4. DOMAIN DECOMPOSITION

For the past decade, domain decomposition techniques have been studied intensively. When domain

decomposition techniques are used, the complicated geometries can be dealt with in a simpler

manner. Also, domain decomposition can be used to handle a system with different types of equations

in different parts of the physical domain. Moreover, when a problem is solved on a parallel computer,

domain decomposition techniques are used to obtain parallelism for the problem. The general concept

to carry out the domain decomposition is to subdivide the domain of de®nition into a set of

subdomains and then obtain solutions of related equations on each subdomain. These solutions of all

the subdomains are then put together in some way to obtain the approximation of the whole

computation domain.

A schematic diagram is shown in Figure 3 which demonstrates the early researchers who have

theoretically dealt with domain decomposition. There are basically two types of domain

decomposition techniques. Some domain decomposition techniques require overlap between two

adjoining subdomains,while others do not. The two categories of problems highlighted in Figure 3 are

those having all ®xed or known boundaries or those having some free (or moving) or unknown

boundaries. In the former category, there is the overlapping domain decomposition Schwarz

Figure 3. Schematic diagram of references to Schwarz methods and extensions
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alternating method.11 This approach starts with a guessed value of the dependent variable on one of

the overlapping domain boundaries whose solution is then obtained in that domain. The other

overlapping domain boundary now has values for the dependent variable along it since it is interior to

the domain whose dependent variable values were just obtained. Using these boundary data, the

values of the dependent variable in this respective domain are obtained. After this calculation, new

updated values on the ®rst overlapped boundary are considered. Again, values of the dependent

variable are calculated for the domain having this boundary. This procedure is continued until

convergence of the values of the dependent variable on the overlapped boundaries.

For ®xed boundary problems, Funaro et al.12 proposed a domain decomposition technique without

overlapping boundaries. See Figure 4 for a schematic diagram of the iterative relaxation process for a

problem whose governing differential equation was H2f � f in D, the domain of solution, with

f � 0 on @D. This problem is split into the two non-overlapping domains D1 and D2, shown with

common boundary G and corresponding governing equations and boundary conditions. An interface

relaxation factor y is introduced to speed up the convergence of the iterative procedure. Iterative

processes are then performed between the two adjacent subdomains by imposing on the interfaces the

continuity of the solution on one side and the continuity of the normal derivative in a weak sense on

the other side. At the limit of the convergence process, transmission conditions at the interface are

therefore satis®ed. Marini and Quarteroni13 proved the convergence, for the two-subdomain case, of

this iterative scheme for both the differential problem and its ®nite element approximation.

For an application of the Schwarz alternating procedure to free boundary value problems, Bruch

and Sloss14 demonstrate how these problems, too complicated for formulation as a variational

inequality, are broken up into two problems on overlapping regions. On one region the problem is

treated as an ordinary boundary value problem; on the second region the `free boundary part' of the

problem is reduced to a variational inequality. By solving the two problems successively, it is shown

that under certain conditions the successive solutions converge to a single function that gives a

solution of the original problem. They also present an application of their results to a free surface

seepage problem.

Similarly to Funaro et al.,12 Papadopoulos et al.15 suggested a domain decomposition technique

having two regions requiring no overlapping area to solve a free boundary seepage problem of a

slanted-faced dam with a toe drain. In addition, Papadopoulos et al.16 used techniques for domain

decomposition on a problem involving a free surface which had more than two non-overlapping

regions.

The various approaches to domain decomposition that have been presented have also been used to

solve problems on parallel computers. For example, the parallel Schwarz alternating procedure (see

references cited in Reference 17) equates the information on the overlapped region of two

subdomains and solves each subdomain concurrently with data exchange between two adjacent

subdomains. White18 proposed several multisplitting techniques to divide the control domain into

Figure 4. Schematic diagram of iterative relaxation process for non-overlapping method
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vertical, horizontal or block subdomains with overlapped regions between adjacent subdomains. In

addition, Rodrigue and Shah17 imposed pseudo-boundary conditions to accelerate the parallel

Schwarz method. Neumann and Dirichlet boundary conditions were imposed on each subdomain to

ensure the continuity of the solutions. Combinations of these two boundary conditions were studied.

For ®xed domain problems and using non-overlapping of two neighbouring subdomains, Farhat

and Wilson19 presented substructural concepts in ®nite element analysis (FEA) using concurrent

processing. Their basic approach was the automatic splitting of an arbitrary spatial domain, with

processors being dynamically reassigned during the several phases of an analysis. Cecchi et al.20

present a domain decomposition method for shallow water equations. Their application is a ®nite

element model of the linear shallow water equation model. Their method uses a non-overlapping

approach by employing a generalized Schur-complement matrix for treating the subdomain

interfaces.

In regard to solving free boundary value problems, using the overlapping domain decomposition

approach on a parallel computer, Wang and Bruch21 present results for a steady state free surface

seepage problem which they obtained using a Hypercube concurrent computer. In addition,

Hoffmann and Zhou22 discuss the parallel solution of variational inequalities on a general closed

convex set using the Schwarz-type decomposition method. They present algorithms which work for

parallel computations on general closed convex sets. Then they investigate the parallel solution of

linear complementarity systems related to variational inequalities. Finally they present numerical

experiments solving a free surface seepage problem to show the convergence of the algorithms.

Herein a domain decomposition technique requiring no overlapping area, derived from that of

Marini and Quarteroni,13 is used for the free surface seepage problem previously discussed. As stated

previously, Marini and Quarteroni13 discuss ®xed boundary problems and convergence of the

numerical solutions. Papadopoulos et al.15 provide a theorem for convergence of a numerical solution

for a free boundary problem separated into two subdomains, one of which includes the complete free

boundary. Although the assumptions are true in a physical sense, no mathematical proof of the

convergence of the iterative procedures can be found for more than two non-overlapping subdomains.

5. PARALLEL ITERATIVE SCHEME

Wang and Bruch23 proposed parallel iterative Gauss±Seidel and SOR iterative schemes.

Conventional Gauss±Seidel and SOR iteration schemes need to be performed sequentially.

Reordering the equations alters these two schemes into fully parallel iterative schemes. Wang and

Bruch23 used this intuitive idea and implemented it on a free boundary seepage problem. Speed-ups

were obtained that were superlinear (speed-up larger than the number of processors used).

The basic essence of the approach is as follows: after the computation domain is subdivided into

subdomains, the problem domain boundary remains a boundary and the interfaces of a subdomain

become new boundaries. Thus the computation of values at interior mesh points for one subdomain is

uncoupled from the other subdomains. Also, the computation of values at interface mesh points of an

interface is uncoupled from the other interfaces. The iterative schemes use a combination of newly

computed values and old values at mesh points surrounding a mesh point to compute the new value at

that mesh point. Therefore the iterative process can be performed for the interior mesh points of a

subdomain using the old values at interface mesh points. Moreover, the values at interface mesh

points can be updated using the newly computed values at interior mesh points by the iterative

process. An example and explanation are given in Reference 23.

Accordingly, this parallel iterative scheme simply reorders the computing sequence such that the

values at interior mesh points are computed ®rst, then those at the interface mesh points are

computed. With this parallel scheme, all processors can compute concurrently for the new values at
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the interior mesh points. Also, all processors update the values at mesh points on the interface in

parallel.

6. PARALLEL SOFTWARE PACKAGES

P424 and PVM25 are message-passing libraries for a cluster of workstations and parallel computers.

With P4 or PVM a cluster of workstations can be used as if it were a single parallel computing

resource.

P4 was developed at Argonne National Laboratory. It is a library of macros and subroutines for

programming a variety of parallel machines. It is intended to be portable, simple to install and use,

and ef®cient. It can be used to programme networks of workstations, advanced message-passing

parallel computers and single shared-memory multiprocessors. The version of P4 used in this study is

1.4.

PVM (parallel virtual machine) was developed at Oak Ridge National Laboratory. It is a software

package that allows a heterogeneous network of parallel and serial computers to appear as a single

concurrent computational resource. It consists of two parts: (i) a daemon process which any user can

install on a machine; (ii) a user library which allows initiating processes on other machines,

communicating between processes and changing the con®guration of machines. The version of PVM

that is used is 3.3.4.

7. RESULTS AND DISCUSSION

Wang and Bruch26 present studies of using a cluster of workstations for ®nite difference and ®nite

element analyses of the same free surface seepage problem which is analysed herein. A parallel

algorithm proven to be simple to implement and ef®cient was used for both analyses. They used the

two popular parallel software packages P4 and PVM to handle the communications among the

networked workstations. Also used for comparison purposes were the Paragon and Meiko CS-2

computers. Furthermore, they give an approach to develop a portable parallel code.

Their results showed that even though they were able to obtain superlinear speed-up using a

Paragon or Meiko CS-2 computer, when they used P4 and PVM on a cluster of workstations the

speed-up was less than the parallel computer speed-ups. The reasons for this were that the

performance was limited by the speed of the network devices and the communication management.

They performed their numerical experiments with the number of degrees of freedom reaching as high

as 8353 for their ®nite element analysis.

The results presented herein will also use the P4 and PVM software on the same cluster of

workstations (seven SGI Indy workstations running the Irix 5.1 operating system) for adaptive mesh

®nite element analyses where the number of mesh points increases as the accuracy of the solution

sought is improved. Also, two methods of applying the adaptive mesh technique are used. In one the

global desired solution error is the same for each adaptive run, while in the second the desired error

criterion is decreased for each following run.

In the ®rst set of experiments the desired percentage error was held at 0�05. The ®nite element

analysis and mesh re®nement were run through several passes until the calculated percentage error

was less than the desired percentage error. In the second set of experiments the desired percentage

errors were given adaptively. Again the adaptive ®nite element analysis and mesh re®nement were

run through several passes until a desired calculated percentage error was obtained. To develop

portable parallel programmes as stated in Reference 26, common Paragon NX interface libraries were

developed and used in the implementation. The parallel ®nite element analysis programme needed

only to re-link with the desired interface library to be portable for different parallel systems. In these
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experiments it was not the intention to compare P4 and PVM. Different timing results were obtained

because of the different ways of implementing the common interface libraries.

Table I shows the results for the ®rst set of experiments. The ®rst set of experiments started with 85

nodes in the computation domain. After three passes of ®nite element analysis and mesh re®nement

the number of nodes increased to 1587. The ®nal calculated percentage error was 0�0351. Table II

shows results for the second set of experiments. The second set of experiments started with the same

number of nodes in the computation domain but only had 788 nodes when the calculated percentage

error was less than 0�05. The second set of experiments had four passes to show the effectiveness of

using a cluster of workstations for parallel ®nite element analysis. Tables III and IV show the results

and parameters of using four workstations. The only place there is a difference in the parameters for

P4 and PVM is in the maximum SOR time. The PVM results for this line are in parentheses.

Table I. P4 (PVM) parameters and results (®rst set of experiments)

No. of processors 1 1 1
Relaxation factor 1�85 1�85 1�85
No. of nodes=processor 85 612 1587
No. of iterations 69 85 103
Max. SOR time 38 (1550) 2511 (4904) 28871 (37100)
Desired % error 0�05 0�05 0�05
Calculated % error 0�1704 0�0571 0�0351

Table II. P4 (PVM) parameters and results (second set of experiments)

No. of processors 1 1 1 1
Relaxation factor 1�85 1�85 1�85 1�85
No. of nodes=processor 85 261 788 1829
No. of iterations 69 80 85 109
Max. SOR time 38 (930) 449 (1459) 4534 (5590) 36888 (38192)
Desired % error 0�10 0�06 0�045 0�03
Calculated % error 0�1704 0�0839 0�0429 0�0323

Table III. P4 (PVM) parameters and results (®rst set of experiments)

No. of processors 4 4 4
Relaxation factor 1.85 1.85 1.85
No. of nodes=processor 25 164 415
No. of iterations 71 85 98
Max. SOR time 693 (5295) 1225 (7751) 5253 (15971)
Desired % error 0.05 0.05 0.05
Calculated % error 0�1704 0�0571 0�0351

Table IV. P4 (PVM) parameters and results (second set of experiments)

No. of processors 4 4 4 4
Relaxation factor 1�85 1�85 1�85 1�85
No. of nodes=processor 25 72 210 478
No. of iterations 71 77 83 107
Max. SOR time 553 (5289) 643 (5941) 1800 (8492) 6757 (14933)
Desired % error 0�10 0�06 0�045 0�03
Calculated % error 0�1704 0�0839 0�0429 0�0323
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Figures 5a and 5b show results from the P4 implementations. Figure 5a shows the timing results for

the ®rst set of experiments. When the number of nodes in the computation domain was small, there

was no need for parallel computation, since the time for communication overhead may be much more

than the computation time. When the number of nodes increased, the computation time also

increased. The speed-up is measured by

speed-up � T1=Tp; �12�

where Tp is the SOR solution time used by the slowest of the p workstations and T1 is the time used

by one workstation. When at the third pass the number of nodes was 1587, superlinear speed-up

Figure 5. Speed-ups for parallel adaptive mesh ®nite element analysis using P4 and constant ®xed desired percentage error
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(speed-up larger than the number of workstations used) was obtained. The superlinear speed-up may

be due to the following.

1. The memory required for each workstation was less and there was less swapping of memory

required.

2. The SOR solver converged with fewer iterations.

Figure 5b shows another set of results, using P4, for the ®rst set of experiments. Somewhat

different speed-ups were obtained. The reason for the different timing results is that there was an

unexpected user logged on one of the workstations in use for the parallel computation.

Figures 6a and 6b show the speed-ups for the second set of experiments. In these two ®gures,

Figure 6. Speed-ups for parallel adaptive mesh ®nite element analysis using P4 and variable desired percentage error
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superlinear speed-ups were also obtained when there were 1829 nodes in the computation domain.

When there were only 788 nodes in the computation domain, the speed-ups were 1�8 for the run using

two workstations and 2�6 for the run using three workstations. Results from these two ®gures were

consistent, since there were no unexpected users logged on any machine in use.

Figures 7 and 8 show PVM implementation results for only one set of runs. Although the speed-ups

are not as good as those from P4 implementations, faster solutions than using only one workstation

were still obtained. Inconsistent results due to unexpected users were also observed.

Figure 7. Speed-ups for parallel adaptive mesh ®nite element analysis using PVM and constant ®xed desired percentage error

Figure 8. Speed-ups for parallel adaptive mesh ®nite element analysis using PVM and variable desired percentage error

190 K. P. WANG AND J. C. BRUCH JR.

INT. J. NUMER. METH. FLUIDS, VOL. 27: 179±192 (1998) # 1998 John Wiley & Sons, Ltd.



These experiments and their results demonstrate the feasibility of using a cluster of workstations to

perform parallel ®nite element analysis. Workstations have slower communication speed slower than

dedicated parallel computers. However, they are still capable of performing parallel ®nite element

analysis effectively. Accordingly, with its low cost=performance ratio a cluster of workstations can be

a good alternative to expensive parallel computers. Today, workstations are widely used by many

organizations. An organization can use its idle workstations to perform parallel computing without

extra cost for parallel computers.

To further study parallel computation using a cluster of workstations, one has to consider that the

performance of using a cluster of workstations for parallel computing may be affected by other users.

As shown above, if one or more users run other CPU=memory-intensive applications on at least one

of the workstations in use, the performance can be degraded to an unacceptable degree. To solve this

problem, one method is to limit the access to workstations in use during the parallel computation.

Another solution is to develop advanced algorithms that can perform dynamic load balancing and

task rescheduling during the parallel computation. With these algorithms a parallel application can

adjust its computing load distribution among workstations according to the loading in each

workstation in use, such that the best performance can be obtained.
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